Wireless expertise plays integral role in eCall test proposals
30-09-2015 |
Stadium
|
Design Applications
From 31 March 2018, all new car models are required to be equipped with
eCall technology that will automatically communicate with the 112-based
emergency response service in the event of a road accident.
Technology and expertise from Stadium United Wireless, a leader in the
design and manufacture of machine-to-machine wireless technology, has helped
TRL (the Transport Research Laboratory) to develop proposed technical
requirements and test procedures for the type-approval of eCall in-vehicle
systems.
Stadium United Wireless provided TRL, an independent transport research,
consultancy and organisation, with telematics units and technical support in
order to develop an appropriate set of test procedures for the eCall
systems. The technology and support from Stadium formed an integral part in
the development of proposed test procedures, which were developed and put
forward by TRL to the European Commission (EC) in preparation of the
mandatory European roll-out of eCall systems in 2018.
As part of the project TRL developed draft requirements and test procedures
for seven technical aspects which include Resistance of eCall systems to
severe crashes (sled test), Full Scale impact test, Crash resistance of
audio equipment, Co-existence of third party services (TPS), Automatic
triggering mechanism, In-vehicle system self-test, and privacy and data
protection.
Technical expertise and a dozen telematics units provided by Stadium were
used for experiments in the dedicated deceleration sled test element, and
operability verification test procedures which set out to measure the
mechanical resistance of eCall systems to severe crashes at accelerations up
to 100 g. The samples were designed, produced and provided by Stadium United
Wireless and included the telematics control module (ECU), containing the
printed circuit board with GSM and GNSS modules, SIM card holder and SIM
card, capacitors and other electronic components.
The test programme was designed and carried out by TRL using its in-house
high-energy test sled facility, which uses a bungee propulsion system and
deceleration elements to achieve severe deceleration levels. A physical and
electronic inspection, via current consumption and GPS/GSM functionality,
was carried out by Stadium United Wireless at the end of the tests which
concluded that all 12 samples remained undamaged, even after being subjected
to a deceleration of over 100g.
Chris Harrison, Head of R&D, Stadium United Wireless, commented: "We were
approached by TRL to participate in this important project due to our
experience and expertise in developing wireless M2M solutions as we already
work with a number of global OEMs in the automotive sector and in the design
and manufacture of telematics products from our TS16949 approved sites in
the UK and China."
"We worked with the technical team at TRL to develop and carry out specific
crash-based testing which tested the resilience and reliability of our range
of telematics ECUs. The inspection results showed that all system designs
under test, although not specifically crash-hardened, survived even the
highest-severity deceleration. This demonstrates that the required level of
deceleration-resistance for an ECU, including a dedicated battery, can be
achieved by applying good and diligent system design practice, as
recommended by our technical team, without applying overly burdensome
crash-hardening methods to the units."
"Working with TRL on this project was a fantastic opportunity for us to test
our own units in high-impact crash scenarios. We are hopeful that the
findings included in TRL's proposal will go on to inform the guidelines and
safety regulations set out by the European Commission for eCall systems as
they have the potential to save thousands of lives through wireless
technology."
Matthias Seidl, vehicle-safety researcher, TRL, added: "Our in-house test
sled allows us to simulate collisions with peak decelerations considerably
higher than most current vehicle tests. These high levels are necessary to
ensure that eCall systems are still able to make an emergency call, even
after a severe crash. The samples Stadium provided and its specific
expertise in the design of these telematics systems helped us develop
stringent but practical test procedures for eCall systems that can ensure
that poor system designs, which could jeopardise the safety of road users,
will not be allowed onto the European market".
"The results can also be used to help shape the technical discussions at an
international level in order to ensure that the same level of protection is
provided to road users around the world. In fact, the suggested European
standards have also been proposed to the United Nations working group on
automatic emergency call systems."
The eCall Regulation (Regulation (EU) 2015/758) empowers the European
Commission (EC) to adopt delegated acts defining 'the detailed technical
requirements and tests for the EC type-approval of vehicles in respect of
their 112-based eCall in-vehicle systems and the EC type-approval of
112-based eCall in-vehicle systems, components and separate technical units'
and delegated and implementing acts regarding privacy and data protection.
The TRL report, entitled 'eCall Phase 2 - Technical requirements and test
procedures for the type-approval of in-vehicle systems', can be downloaded
free of charge from the European Commission website, says the company.
By Electropages
Electropages is a trusted source of news and insights from the global electronics industry. With a dedicated team of experts and editors, Electropages delivers in-depth articles, product updates, and market trends across sectors such as embedded systems, IoT, connectors, and power solutions. Our mission is to empower engineers and professionals with the knowledge they need to innovate and succeed in a rapidly evolving technological landscape.